MATH 4830 Twotonal 22/9/22 1) Assignent I due tonglot (@ 11:59pm on blackboard <u>On the Regularity Condition</u> - Last time saw theat in definition of a regular surface we had the regularity condition? Hp, dXp is full-rank (=) Xu, Xv are linearly independent This is to avoid situations like Por c- no tempent plune here. M Explain a little more lian the regularity condition prevents situation Recall from linear algebora theat full-rank means null-space of $dX = \{0\}$. Suppose partime a regular curve $X = \{0\}$ $X = \{0\}$ Xand $dX_p(\alpha(0)) = p'(0) = 0$ is dX_p has a non-trivial will space! In other nords, full-rank conclusion means tangent plane at each point lices climension > 0.

Regular Values and Inverse Images of Regular Values Def: let fi R³-JR be a suboth function, all R is a regular value if V xe R² s.t. f(x) = a, $\nabla f(x) \neq 0$. Otherwise, R is a critical value of f and k is a critical point. Prop: let f: R³ > R be a smooth function and a c R en reguleur value of f. Then f'(a) is a regular surface.

Ex 1: Hyperbolotel of 2 Sheets: - x2-y2+z2=1. Show theat this
1 1 is a vegular surface and find a
parametrization.
Define $f(x, y, z) = -\kappa^2 - y^2 + z^2 - 1$.
Clearly the surface is the inverse mage
$f^{-1}(0) = \xi(x,y,z) : -x^{2} - y^{2} + z^{2} = 1$
Clearly f:R" -> R is smooth, and
Ois a regular value of f since
2f = -2k, 2f24 2f = 27 So VF vemishes only at (0,0)
and (0,0,0) & f (0). So it is a regular supplied.
Remote as p2+y2+1=22. Taking p2=p2+y2 (10 K=rcosV)
Then we got $r^2 + 1 = z^2 = 1 = z^2 - r^2$, $1 = rom V$
Then by hypozbolic trig identity cosh ² u - sinh ² u = 1
we take Z= coshu, rasmiku, then we have
(x,y,z) = (sinku cosv, sinku sinv, coshu)
This is an annual of a provider of the face of the Lis disconnection
vuis is un example of a regular surface ment is usconnected
· · · · · · · · · · · · · · · · · · ·

Regular Surfaces are Graphs Locally Prop: Let M be ce regular sur face and X: U->M be a local parametrization. Then for any P=(uo,vo) = U, there is an open set VCU with pEV S.t. X(V) is the graph of a differentiable function in one of the Coordinate planes. $\mathcal{K}(V) = (x, y, f(x, y)) \text{ or } (x, g(x, 7), 7), (f_{(y, 7)}, y, 7)$

Ex2: One-sheeted cone Zz+ Jx24y2 is not a vegular
Surface. 7
If Use fact that vegular
Surfaces are locally graphs
there is a point liere it
connot be a greyon of a dett. I'm
=) Wol a regular surface.
I clearly (0,0,0) is the problem point
So let's show it is not the graph of a differentiable function
Mcally around (0,0,0). Suppose it is the graph of a diff. fn.,
then it could either be written x=h(y,z), y=g(x,z),
z = f(x, y).
So examine z= f(x,y), Since projections arts xZ, yZ planes
usual lieve to take the form are not one so the further
Z=t[x+y] locally of O.
Rist this function is not differential to at (00)
is with the contract of (0,0).

Differentiable Functions Def: let f: VCM > R be a function defined in an open subset V of a regular surface M. fis differentiable at peV if I parametrization X: UC RZ -> VMM with p e X(U) st. f-X:U->R is differentiable ust X-'(p) \mathbb{R}^2 \mathbb{R}^2 \mathbb{R} t•X Ex: The height function relative to a with vector ve R³ h: M=R by h(p)=p.v is a differentiable function Essentially leceuse the dot product is differentiable.